Respuesta :
Answer:
a = 3
b = 6
The product ab = 3 x 6 = 18
Step-by-step explanation:
Data Given:
Fraction of the area of Fido's yard = [tex]\pi x \frac{\sqrt{a} }{b}[/tex]
Let X be the side of the hexagon.
So, the area of the Hexagon is:
Area of the Hexagon = [tex]\frac{3\sqrt{3} }{2} X^{2}[/tex]
Now, we have to calculate the length of Fido's Leash by using Lw of Sine
Law of Sine = [tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex]
[tex]\frac{0.5S}{sin30}[/tex] = [tex]\frac{Length}{sin60}[/tex]
Solving for Length, where sin30 = 1/2 and sin60 = [tex]\frac{\sqrt{3} }{2}[/tex]
Suppose Length = Y
Y = [tex]\frac{\sqrt{3} }{2}[/tex]X
Now, as we have got the length we can calculate the area that Fido can cover,
So, the area covered by Fido = [tex]\pi[/tex] x [tex]Y^{2}[/tex]
Area = [tex]\pi[/tex] x [tex](\frac{\sqrt{3} }{2}X) ^{2}[/tex]
Area = [tex]\pi[/tex] x [tex]\frac{3}{4}[/tex] x [tex]X^{2}[/tex]
So, now, we can get the fraction of the area of Fido's Yard by dividing the area of hexagon by area that fido can cover.
Fraction of the area of Fido's yard = [tex]\pi x \frac{\sqrt{a} }{b}[/tex]
[tex]\pi[/tex] x [tex]\frac{3}{4}[/tex] x [tex]X^{2}[/tex] / [tex]\frac{3\sqrt{3} }{2} X^{2}[/tex]
[tex]\pi[/tex] x [tex]\frac{3}{4}[/tex] / [tex]\frac{3\sqrt{3} }{2}[/tex]
6 [tex]\pi[/tex] / [tex]12\sqrt{3}[/tex]
[tex]\pi[/tex] / [tex]2\sqrt{3}[/tex]
Which can be rewritten as by multiplying and dividing by [tex]\sqrt{3}[/tex]
[tex]\sqrt{3} \pi[/tex]/ 6
By comparing the above equation and the given equation we can find a and b :
So,
a = 3
b = 6
And the product ab = 3 x 6 = 18