Respuesta :

Answer:

come on baexz f** me in 69

840060

Answer:

[tex]\sqrt[7]{x^{3} }= x^{\frac{3}{7} }[/tex]

Step-by-step explanation:

In order to solve this question we need to understand the following.

[tex]\sqrt{x}[/tex] = [tex]x^{\frac{1}{2} }[/tex]

[tex]\sqrt[3]{x} = x^{\frac{1}{3} }[/tex]

[tex]\sqrt[4]{x}= x^{\frac{1}{4} }[/tex]

(Notice that the numerator of the fraction is the power of the x that is being squared)

If you need proof here it is.....

[tex]\sqrt{x} = x^{\frac{1}{2} }[/tex]

[tex](\sqrt{x} )^{2}[/tex] = [tex](x^{\frac{1}{2} } )^{2}[/tex]

x = x

Now that we got that out of the way we can rewrite [tex]\sqrt[7]{x^{3} }[/tex] as........

[tex]\sqrt[7]{x^{3} }= x^{\frac{3}{7} }[/tex]