Respuesta :

Answer:

[tex]x=\pm \sqrt{\frac{3}{10}}[/tex]

Step-by-step explanation:

[tex]-10x^2+12-9=0\\\\-10x^2+3=0\\\\-10x^2=-3\\\\x^2=\frac{-3}{-10}\\\\x^2=\frac{3}{10}\\\\[/tex]

here we have to cases

case 1

[tex]x=\sqrt{\frac{3}{10}}\\[/tex]

case 2

[tex]x=-\sqrt{\frac{3}{10}}[/tex]

Given:

Consider the given equation is

[tex]-10x^2+12x-9=0[/tex]

To find:

The roots of x in the given equation.

Solution:

We have,

[tex]-10x^2+12x-9=0[/tex]

On comparing this equation with [tex]ax^2+bx+c=0[/tex], we get

[tex]a=-10,b=12,c=-9[/tex]

Using quadratic formula, we get

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\dfrac{-(12)\pm \sqrt{(12)^2-4(-10)(-9)}}{2(-10)}[/tex]

[tex]x=\dfrac{-12\pm \sqrt{144-360}}{-20}[/tex]

[tex]x=\dfrac{-12\pm \sqrt{-216}}{-20}[/tex]

We know that, [tex]\sqrt{-1}=i[/tex].

[tex]x=\dfrac{-12\pm 6\sqrt{6}i}{-20}[/tex]

[tex]x=\dfrac{-2(6\mp 3\sqrt{6}i)}{-20}[/tex]

[tex]x=\dfrac{6\mp 3\sqrt{6}i}{10}[/tex]

[tex]x=\dfrac{6+3\sqrt{6}i}{10}[/tex] and [tex]x=\dfrac{6-3\sqrt{6}i}{10}[/tex]

Therefore, the roots of the given equation are [tex]x=\dfrac{6+3\sqrt{6}i}{10}[/tex] and [tex]x=\dfrac{6-3\sqrt{6}i}{10}[/tex].