Respuesta :

Answer:

  [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}3\\2\\\end{array}\right][/tex]

Solution of the given system of equations

 x = 3 and  y= 2

                     

Step-by-step explanation:

Step(i):-

Given system of equations are

                                      4x - y =  10 ...(i)

                                     8x +5y = 34...(ii)

The matrix form

                          A X = B

[tex]\left[\begin{array}{ccc}4&-1\\8&5\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}10\\34\\\end{array}\right][/tex]

Step(ii):-

By using matrix inversion method

[tex]A^{-1} = \frac{1}{|A|} adj A[/tex]

|A| = ad-b c = 4(5) - 8(-1) = 20+8 = 28

Given matrix

            [tex]A = \left[\begin{array}{ccc}4&-1\\8&5\\\end{array}\right][/tex]

[tex]AdjA = \left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right][/tex]

[tex]A djA = \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right][/tex]

Inverse of the matrix

                           [tex]A^{-1} = \frac{1}{|A|} adj A[/tex]

                          [tex]A^{-1} = \frac{1}{|A|} A djA =\frac{1}{28} \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right][/tex]

Step(iii):-

The solution of the given system of equations by using matrix inversion method

                     X = A⁻¹ B

                    [tex]X = A^{-1}B =\frac{1}{28} \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right]\left[\begin{array}{ccc}10\\34\\\end{array}\right][/tex]

                   [tex]X = A^{-1}B =\frac{1}{28} \left[\begin{array}{ccc}5X10+1X34\\-8X10+4X34\\\end{array}\right][/tex]

                 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] =\frac{1}{28} \left[\begin{array}{ccc}84\\56\\\end{array}\right][/tex]

                 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}3\\2\\\end{array}\right][/tex]

Final answer:-

Solution of the given system   x = 3 and  y= 2