Respuesta :

Given:

[tex]\left(-\dfrac{2}{3}\right)\times \left(-\dfrac{2}{3}\right)^3[/tex]

To find:

The value of given expression by using the Laws of Exponents.

Solution:

We have,

[tex]\left(-\dfrac{2}{3}\right)\times \left(-\dfrac{2}{3}\right)^3[/tex]

Using the Laws of Exponents, we get

[tex]=\left(-\dfrac{2}{3}\right)^{1+3}[/tex]      [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]=\left(\dfrac{-2}{3}\right)^{4}[/tex]

[tex]=\dfrac{(-2)^4}{(3)^4}[/tex]      [tex][\because \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}][/tex]

[tex]=\dfrac{(-2)\times (-2)\times (-2)\times (-2)}{(3)\times (3)\times (3)\times (3)}[/tex]

[tex]=\dfrac{16}{81}[/tex]

Therefore, the value of given expression is [tex]\dfrac{16}{81}[/tex].