Answer:
[tex]x = 2[/tex] or [tex]x = -1[/tex]
Step-by-step explanation:
Given
[tex]\sqrt{x + 2}= {-x}[/tex]
Required
Find the possible values fo x
[tex]\sqrt{x + 2}= {-x}[/tex]
Square both sides
[tex]( \sqrt{x + 2})^2= ({-x})^2[/tex]
[tex]x + 2 = x^2[/tex]
Equate to 0
[tex]x^2 - x - 2 = 0[/tex]
Expand
[tex]x^2 + x -2x - 2 = 0[/tex]
Factorize:
[tex]x(x + 1) - 2(x + 1) = 0[/tex]
[tex](x -2)(x +1) = 0[/tex]
Split:
[tex]x - 2 = 0[/tex] or [tex]x + 1 = 0[/tex]
[tex]x = 2 + 0[/tex] or [tex]x = 0-1[/tex]
[tex]x = 2[/tex] or [tex]x = -1[/tex]