To initiate a nuclear reaction, an experimental nuclear physicist wants to shoot a proton into a 5.50-fm-diameter 12C nucleus. The proton must impact the nucleus with a kinetic energy of 2.30 MeV. Assume the nucleus remains at rest. With what speed must the proton be fired toward the target?

Respuesta :

Answer:

[tex]V_1= 3.4*10^7m/s[/tex]

Explanation:

From the question we are told that

Nucleus diameter [tex]d=5.50-fm[/tex]

a 12C nucleus

Required kinetic energy [tex]K=2.30 MeV[/tex]

Generally initial speed of proton must be determined,applying the law of conservation of energy we have

            [tex]K_2 +U_2=K_1+U_1[/tex]

where

[tex]K_1[/tex] =initial kinetic energy

[tex]K_2[/tex] =final kinetic energy

[tex]U_1[/tex] =initial electric potential

[tex]U_2[/tex] =final electric potential

mathematically

   [tex]U_2 = \frac{Kq_pq_c}{r_2}[/tex]

where

[tex]r_f[/tex]=distance b/w charges

[tex]q_c[/tex]=nucleus charge [tex]=6(1.6*10^-^1^9C)[/tex]

[tex]K[/tex]=constant

[tex]q_p[/tex]=proton charge

Generally kinetic energy is know as

         [tex]K=\frac{1}{2} mv^2[/tex]

Therefore

         [tex]U_2 = \frac{Kq_pq_c}{r_2} + K_2=\frac{1}{2} mv_1^2 +U_1[/tex]

Generally equation for radius is [tex]d/2[/tex]

Mathematically solving for radius of nucleus

         [tex]R=(\frac{5.50}{2}) (\frac{1*10^-^1^5m}{1fm})[/tex]

         [tex]R=2.75*10^-^1^5m[/tex]

Generally we can easily solving mathematically substitute into v_1

   [tex]q_p[/tex][tex]=6(1.6*10^-^1^9C)[/tex]

   [tex]K_1=9.0*10^9 N-m^2/C^2[/tex]

   [tex]U_1= 0[/tex]

   [tex]R=2.75*10^-^1^5m[/tex]

   [tex]K=2.30 MeV[/tex]

   [tex]m= 1.67*10^-^2^7kg[/tex]

   [tex]V_1= (\frac{2}{1.67*10^-^2^7kg})^1^/^2 (\frac{(9.0*10^9 N-m^2/C^2)*(6(1.6*10^-^1^9C)(1.6*10^-^1^9C)}{2.75*10^-^1^5m+2.30 MeV(\frac{1.6*10^-^1^3 J}{1 MeV}) }[/tex]

    [tex]V_1= 3.4*10^7m/s[/tex]

Therefore the proton must be fired out with a speed of [tex]V_1= 3.4*10^7m/s[/tex]

ACCESS MORE
EDU ACCESS