Respuesta :
Step-by-step explanation:
[tex]6^7-6^6+6^5=6^{5+2}-6^{5+1}+6^5\\\\\text{use}\ a^n\cdot a^m=a^{n+m}\\\\=6^5\cdot6^2-6^5\cdot6^1+6^5\\\\\text{use the distributive property}\ a(b+c)=ab+ac\\\\=6^5\cdot(6^2-6^1+1)=6^5\cdot(36-6+1)=6^5\cdot31\\\\6^7-6^6+6^5=6^5\cdot31[/tex]
therefore it's divisible by 31
[tex](6^7-6^6+6^5):31=(6^5\cdot31):31=6^5[/tex]
