Respuesta :
Answer:
[tex]\frac{dV}{dt} = 360 \ cm^3/h[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
Geometry
- Volume of a Rectangular Prism: V = lwh
Calculus
Derivatives
Derivative Notation
Differentiating with respect to time
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
[tex]l = 30 \ cm\\w = l\\\frac{dl}{dt} = 2 \ cm/h\\h = 20 \ cm\\\frac{dh}{dt} = 3 \ cm/h[/tex]
Step 2: Differentiate
- Rewrite [VRP]: [tex]V = l^2h[/tex]
- Differentiate [Basic Power Rule]: [tex]\frac{dV}{dt} = 2l\frac{dl}{dt} \frac{dh}{dt}[/tex]
Step 3: Solve for Rate
- Substitute: [tex]\frac{dV}{dt} = 2(30 \ cm)(2 \ cm/h)(3 \ cm/h)[/tex]
- Multiply: [tex]\frac{dV}{dt} = 360 \ cm^3/h[/tex]
Here this tells us that our volume is decreasing (ice melting) at a rate of 360 cm³ per hour.
Otras preguntas
