Respuesta :
Answer:
0.0158m/s
Explanation:
Using the law of conservation of energy which states that the sum of momentum before collision is equal to the sum after collision. It is expressed mathematically as;
m1u1 + m2u2 = m1v1 + m2v1
m1 and m2 are the masses of the object
u1 and u2 are the initial velocities
v1 and v2 are the final velocities
Given
m1 = 300g = 0.3kg
u1 = 1.10m/s
m2 = 4.00kg
u2 = 0m/s (at rest)
v1 = 0.890
v2 = ?
Substitute the given values into the formula;
0.3(1.10) + 0 = 0.3(0.89) + 4v2
0.33 = 0.267 + 4v2
0.33-0.267 = 4v2
0.063 = 4v2
v2 = 0.063/4
v2 = 0.0158m/s
Hence the speed of the large cart after the collision is 0.0158m/s
The speed of the large cart will be "0.0158 m/s".
According to the question:
Mass,
- [tex]m_1 = 300 \ g = 0.3 \ kg[/tex]
- [tex]m_2 = 4.00 \ kg[/tex]
Final velocity,
- [tex]u_1 = 1.10 \ m/s[/tex]
- [tex]u_2 = 0 \ m/s[/tex]
Initial velocity,
- [tex]v_1 = 0.890 \ m/s[/tex]
- [tex]v_2 = \ ?[/tex]
By using the law of conservation, we get
→ [tex]m_1 u_1 +m_2 u_2 =m_1 v_1 +m_2 v_1[/tex]
By substituting the values, we get
→ [tex]0.3(1.10)+0 = 0.3(0.89)+4v_2[/tex]
→ [tex]0.33=0.267+4 v_2[/tex]
[tex]0.33-0.267 = 4 v_2[/tex]
[tex]0.063 =4v_2[/tex]
[tex]v_2 = \frac{0.063}{4}[/tex]
[tex]= 0.0158 \ m/s[/tex]
Thus the response above is appropriate.
Learn more about speed here:
https://brainly.com/question/14478313