Respuesta :
Answer:
[tex]\lambda =533.6 nm [/tex]
Explanation:
the slits spacing, d = 0.21 mm
distance of screen, D = 61 cm
The condition for minima is given as
[tex]dsin(\theta) = \left ( n+\frac{1}{2} \right )\lambda[/tex]
So, first minima, n = 0
[tex]dsin(\theta_1) = \frac{1}{2}\lambda[/tex]
fifth minima, n = 4
[tex]dsin(\theta_5) = \frac{9}{2}\lambda[/tex]
[tex]d(sin(\theta_5) -sin(\theta_1))= 4\lambda[/tex]
For small angle
[tex]d(tan(\theta_5) -tan(\theta_1))= 4\lambda[/tex]
From the figure:
[tex]d(\frac{y_5}{D}-\frac{y_1}{D})= 4\lambda[/tex]
[tex]\frac{d}{D} (y_5-y_1) = 4\lambda[/tex]
[tex]\lambda = \frac{d}{4D} (y_5-y_1)[/tex]
[tex]\lambda = \frac{0.021}{4(61)} (6.2 \times 10^{-3})[/tex]
[tex]\lambda =533.6 nm[/tex]
"533.5 nm" would be the wavelength of the light used in this experiment.
According to the question,
Slits spacing,
- d = 0.21 mm
Distance of screen,
- D = 61 cm
The condition for minima is given as:
→ [tex]d (sin \Theta) = (n+\frac{1}{2} ) \lambda[/tex]
So,
1st minima, n = 0
→ [tex]d sin(\Theta_1)= \frac{1}{2} \lambda[/tex]
5th minima, n = 4
→ [tex]d (sin (\Theta_5) - sin (\Theta_1) = 4 \lambda[/tex]
For small angle,
→ [tex]d (tan (\Theta_5) - tan (\Theta_1) = 4 \lambda[/tex]
From the figure, we get
→ [tex]d(\frac{y_5}{D} - \frac{y_1}{D} )= 4 \lambda[/tex]
[tex]\frac{d}{D} (y_5 -y_1) = 4 \lambda[/tex]
[tex]\lambda = \frac{d}{4D}(y_5-y_1)[/tex]
[tex]= \frac{0.021}{4\times 61} (6.2\times 10^{-3})[/tex]
[tex]= 533.6 \ nm[/tex]
Thus the above answer is correct.
Learn more:
https://brainly.com/question/14294313

