Answer:
A= ₹3,112.72
CI = ₹1,112.72
Step-by-step explanation:
Here P = ₹ 12000
Since, interest is compounded half yearly.
Therefore, R = 6/2 = 3%
n = 3/2* 2 = 3 half years
[tex] \because A= P\bigg(1+\frac{R}{100}\bigg)^n [/tex]
[tex] \therefore A= 12000\times \bigg(1+\frac{3}{100}\bigg)^3 [/tex]
[tex] \therefore A= 12000\times \bigg(\frac{100+3}{100}\bigg)^3 [/tex]
[tex] \therefore A= 12000\times \bigg(\frac{103}{100}\bigg)^3 [/tex]
[tex] \therefore A= 12000\times \bigg(1.03\bigg)^3 [/tex]
[tex] \therefore A= 12000\times 1.092727 [/tex]
[tex] \therefore A= 13,112.724 [/tex]
[tex] \therefore A=Rs. \:13,112.72 [/tex]
CI = A - P
CI = 13,112.72 - 12000
CI = ₹1,112.72