Respuesta :

Answer:

Length  [tex]=25[/tex] inches

Width [tex]= 15[/tex] inches

Step-by-step explanation:

Let [tex]l[/tex] = length of rectangle, [tex]w[/tex] = width of rectangle

Given the area and the perimeter of the rectangle, we can write:

[tex]lw = 375[/tex]

[tex]2l+2w=80[/tex]

So:

[tex]l+w = 80\div2[/tex]

[tex]=40[/tex]

[tex]l=40-w[/tex]

Now, we can use substitution to find the value of [tex]w[/tex]:

[tex]lw = 375[/tex]

[tex](40-w)w = 375[/tex]

[tex]40w-w^2 = 375[/tex]

[tex]375+w^2-40w = 0[/tex] (Quadratic equation)

[tex](w-15)(w-25) = 0[/tex]

∴ [tex]w = 15, 25[/tex]

We can use substitution again to find the value of [tex]l[/tex]

[tex]lw = 375[/tex]

[tex]l=375\div w[/tex]

[tex]=25,15[/tex]

∵ Length usually refers to the longer side of a rectangle, ∴ length [tex]=25[/tex] inches and width [tex]=15[/tex] inches.

Hope this helps :)

RELAXING NOICE
Relax