A converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures of (a) 500 kPa and (b) 784 kPa.

Respuesta :

Answer:

a) for back pressures of (a) 500 kPa

- mass flow rate is 2.127 kg/s

- exit Mach number is 1.046

b) for back pressures of (a) 784 kPa

- mass flow rate is 1.793 kg/s

- exit Mach number is 0.6

Explanation:

Given that;

A₂ = 0.001 m²

P₁ = 1 MPa

T₁ = 360 K

k = 1.4

P₂ = 500 Kpa

(1000/500)^(1.4-1 / 1.4) = 360 /T₂

2^(0.4/1.4) = 360/T₂

1.219 = 360 / T₂

T₂ = 360 / 1.219

T₂ = 295.32 K

CpT₁ + V₁²/2000 = CpT₂ + V₂²/2000

we substitute

CpT₁ + V₁²/2000 = CpT₂ + V₂²/2000

1.005 × 360 =  1.005 × 295.32 + v₂²/2000

v₂ = 360.56 m/s²

p₂v₂ = mRT₂

500 × (0.001 × 360.56) = m × 0.287 × 295.32

m = 2.127 kg/s

so Mach Number = V₂ / Vc

Vc = √( kRT) = √( 1.4 × 287 × 295.32) = 344.47 m/s

So Mach Number =  V₂ / Vc  =  360.56 / 344.47 = 1.046

Therefore for back pressures of (a) 500 kPa

- mass flow rate is 2.127 kg/s

- exit Mach number is 1.046

b)

AT P₂ = 784 kPa

(1000/784)^(1.4-1 / 1.4) = 360/T₂

T₂ = 335.82 K

now

V₂²/2000 = 1.005( 360 - 335.82)

V₂ = 220.45 m/s

P₂V₂ = mRT₂

784 × (0.001 × 220.45) = m( 0.287) ( 335.82)

172.83 = 96.38 m

m = 172.83 / 96.38

m = 1.793 kg/s

just like in a)

Vc = √( kRT) = √( 1.4 × 287 × 335.82) = 367.32 m/s

Mach Number = V₂ / Vc = 220.45 / 367.32 = 0.6

Therefore for back pressures of (a) 784 kPa

- mass flow rate is 1.793 kg/s

- exit Mach number is 0.6

Following are the

Given:

[tex]A_2 = 0.001\ m^2\\\\P_1 = 1\ MPa\\\\T_1 = 360\ K\\\\k = 1.4\\\\P_2 = 500\ Kpa\\\\[/tex]

To find:

Flow rate of mass, and Mach number

Solution:

For point a)

Using formula:

[tex]\to P^{\frac{r-1}{r}} \alpha T\\\\\to (\frac{1000}{500})^(\frac{1.4-1}{1.4}) = \frac{360}{T_2}\\\\\to 2^(\frac{0.4}{1.4}) = \frac{360}{T_2}\\\\\to 1.219 = \frac{360}{T_2}\\\\\to T_2 = \frac{360}{1.219}\\\\\to T_2 = 295.32\ K\\\\[/tex]

[tex]\to C_pT_1 + \frac{V_1^2}{2000} = C_pT_2 + \frac{V_2^2}{2000}\\\\\to 1.005 \times 360 = 1.005 \times 295.32 + \frac{v_2^2}{2000}\\\\\to v_2 = 360.56 \ \frac{m}{s^2} \\\\\to p_2v_2 = mRT_2\\\\\to 500 \times (0.001 \times 360.56) = m \times 0.287 \times 295.32\\\\\to m = 2.127\ \frac{kg}{s}\\\\[/tex]

Mach Number [tex]= \frac{V_2}{V_c}\\\\[/tex]

[tex]\to V_c = \sqrt{( kRT)} = \sqrt{( 1.4 \times 287 \times 295.32)} = 344.47 \ \frac{m}{s}\\\\[/tex]

[tex]\to \frac{V_2}{V_c} = \frac{360.56}{344.47} = 1.046[/tex]

For point b)

[tex]\to P_2 = 784\ kPa\\\\\to (\frac{1000}{784})^{(\frac{0.4}{1.4})} = \frac{360}{T_2}\\\\\to T_2 = 335.82\ K\\\\[/tex]

now

[tex]\to \frac{V_2^2}{2000} = 1.005( 360 - 335.82)\\\\\to V_2 = 220.45 \frac{m}{s}\\\\\to V_c = \sqrt{( kRT)} = \sqrt{( 1.4 \times 287 \times 335.82)} = 367.32\ \frac{ m}{s}\\\\\to c= \frac{220.45}{ 367.32} = 0.6\\[/tex]

Learn more about flow rate of mass, and Mach number:

brainly.com/question/15055873

RELAXING NOICE
Relax