Respuesta :
Answer:
a) for back pressures of (a) 500 kPa
- mass flow rate is 2.127 kg/s
- exit Mach number is 1.046
b) for back pressures of (a) 784 kPa
- mass flow rate is 1.793 kg/s
- exit Mach number is 0.6
Explanation:
Given that;
A₂ = 0.001 m²
P₁ = 1 MPa
T₁ = 360 K
k = 1.4
P₂ = 500 Kpa
(1000/500)^(1.4-1 / 1.4) = 360 /T₂
2^(0.4/1.4) = 360/T₂
1.219 = 360 / T₂
T₂ = 360 / 1.219
T₂ = 295.32 K
CpT₁ + V₁²/2000 = CpT₂ + V₂²/2000
we substitute
CpT₁ + V₁²/2000 = CpT₂ + V₂²/2000
1.005 × 360 = 1.005 × 295.32 + v₂²/2000
v₂ = 360.56 m/s²
p₂v₂ = mRT₂
500 × (0.001 × 360.56) = m × 0.287 × 295.32
m = 2.127 kg/s
so Mach Number = V₂ / Vc
Vc = √( kRT) = √( 1.4 × 287 × 295.32) = 344.47 m/s
So Mach Number = V₂ / Vc = 360.56 / 344.47 = 1.046
Therefore for back pressures of (a) 500 kPa
- mass flow rate is 2.127 kg/s
- exit Mach number is 1.046
b)
AT P₂ = 784 kPa
(1000/784)^(1.4-1 / 1.4) = 360/T₂
T₂ = 335.82 K
now
V₂²/2000 = 1.005( 360 - 335.82)
V₂ = 220.45 m/s
P₂V₂ = mRT₂
784 × (0.001 × 220.45) = m( 0.287) ( 335.82)
172.83 = 96.38 m
m = 172.83 / 96.38
m = 1.793 kg/s
just like in a)
Vc = √( kRT) = √( 1.4 × 287 × 335.82) = 367.32 m/s
Mach Number = V₂ / Vc = 220.45 / 367.32 = 0.6
Therefore for back pressures of (a) 784 kPa
- mass flow rate is 1.793 kg/s
- exit Mach number is 0.6
Following are the
Given:
[tex]A_2 = 0.001\ m^2\\\\P_1 = 1\ MPa\\\\T_1 = 360\ K\\\\k = 1.4\\\\P_2 = 500\ Kpa\\\\[/tex]
To find:
Flow rate of mass, and Mach number
Solution:
For point a)
Using formula:
[tex]\to P^{\frac{r-1}{r}} \alpha T\\\\\to (\frac{1000}{500})^(\frac{1.4-1}{1.4}) = \frac{360}{T_2}\\\\\to 2^(\frac{0.4}{1.4}) = \frac{360}{T_2}\\\\\to 1.219 = \frac{360}{T_2}\\\\\to T_2 = \frac{360}{1.219}\\\\\to T_2 = 295.32\ K\\\\[/tex]
[tex]\to C_pT_1 + \frac{V_1^2}{2000} = C_pT_2 + \frac{V_2^2}{2000}\\\\\to 1.005 \times 360 = 1.005 \times 295.32 + \frac{v_2^2}{2000}\\\\\to v_2 = 360.56 \ \frac{m}{s^2} \\\\\to p_2v_2 = mRT_2\\\\\to 500 \times (0.001 \times 360.56) = m \times 0.287 \times 295.32\\\\\to m = 2.127\ \frac{kg}{s}\\\\[/tex]
Mach Number [tex]= \frac{V_2}{V_c}\\\\[/tex]
[tex]\to V_c = \sqrt{( kRT)} = \sqrt{( 1.4 \times 287 \times 295.32)} = 344.47 \ \frac{m}{s}\\\\[/tex]
[tex]\to \frac{V_2}{V_c} = \frac{360.56}{344.47} = 1.046[/tex]
For point b)
[tex]\to P_2 = 784\ kPa\\\\\to (\frac{1000}{784})^{(\frac{0.4}{1.4})} = \frac{360}{T_2}\\\\\to T_2 = 335.82\ K\\\\[/tex]
now
[tex]\to \frac{V_2^2}{2000} = 1.005( 360 - 335.82)\\\\\to V_2 = 220.45 \frac{m}{s}\\\\\to V_c = \sqrt{( kRT)} = \sqrt{( 1.4 \times 287 \times 335.82)} = 367.32\ \frac{ m}{s}\\\\\to c= \frac{220.45}{ 367.32} = 0.6\\[/tex]
Learn more about flow rate of mass, and Mach number:
brainly.com/question/15055873
