Respuesta :
Answer:
(195 - 286) ± 1.992 * sqrt((46^2/45) + (58^2/40))
Step-by-step explanation:
Given that:
NEWER CARS:
Sample size = n1 = 45
Standard deviation s1 = 46
Mean = m1 = 195
OLDER CARS:
Sample size = n2 = 40
Standard DEVIATION s2 = 58
Mean = m2 = 286
Confidence interval at 95% ; α = 1 - 0.95 = 0.05 ; 0.05 / 2 = 0.025
Confidence interval is calculated thus : (newer--older)
(m1 - m2) ± Tcritical * standard error
Mean difference = m1 - m2; (195 - 286)
Tcritical = Tn1+n2-2, α/2 = T(45+40)-2 = T83, 0.025 = 1.99 (T value calculator)
Standard error (E) = sqrt((s1²/n1) + (s2²/n2))
E = sqrt((46^2/45) + (58^2/40))
Hence, confidence interval:
(195 - 286) ± 1.992 * sqrt((46^2/45) + (58^2/40))
The 95% confidence interval for estimating the difference in the mean dollar cost of the routine maintenance between newer and older cars is given by:
[tex]CI=(\overline{x_1} - \overline{x_2}) \pm t_{critical} \sqrt{\dfrac{s_1^2}{n_1} + \dfrac{s_2^2}{n_2}}[/tex]
Given that:
The first sample consists of owners of newer cars
- First sample's size = [tex]n_1 =45[/tex]
- First sample's mean = [tex]\overline{x_1}=\$195[/tex]
- First sample's standard deviation = [tex]s_1 = \$46[/tex]
The second sample consists of owner of older cars.
- Second sample's size = [tex]n_2 = 40[/tex]
- Second sample's mean = [tex]\overline{x_2}=\$286[/tex]
- Second sample's standard deviation = [tex]s_2 = \$58[/tex]
To find:
95% confidence interval for difference between both samples' means.
Calculations and Explanations:
Since the sample sizes are > 30, thus we can use the z table for finding the Confidence interval.
The CI is given as:
[tex]CI=(\overline{x_1} - \overline{x_2}) \pm t_{critical} \sqrt{\dfrac{s_1^2}{n_1} + \dfrac{s_2^2}{n_2}}[/tex]
For 0.95 probability confidence, we have t at 40+45-3= t at 83 at 0.05/2 is 1.992 (from T tables)
Thus,
[tex]CI=(195-268) \pm 1.992 \sqrt{\dfrac{46^2}{45} + \dfrac{58^2}{40}}[/tex]
Learn more about confidence interval here:
https://brainly.com/question/4249560
