A beam of span L meters simply supported by the ends, carries a central load W. The beam section is shown in figure. If the maximum shear stress is 450 N/cm2 when the maximum bending stress is 1500 N/cm2. Calculate the value of the centrally applied point load W and the span L. The overall height of the I section is 29 cm.

A beam of span L meters simply supported by the ends carries a central load W The beam section is shown in figure If the maximum shear stress is 450 Ncm2 when t class=

Respuesta :

Answer:

W = 11,416.6879 N

L ≈ 64.417 cm

Explanation:

The maximum shear stress, [tex]\tau_{max}[/tex], is given by the following formula;

[tex]\tau_{max} = \dfrac{W}{8 \cdot I_c \cdot t_w} \times \left (b\cdot h^2 - b\cdot h_w^2 + t_w \cdot h^2_w \right )[/tex]

[tex]t_w[/tex] = 1 cm = 0.01

h = 29 cm = 0.29 m

[tex]h_w[/tex] = 25 cm = 0.25 m

b = 15 cm = 0.15 m

[tex]I_c[/tex] = The centroidal moment of inertia

[tex]I_c = \dfrac{1}{12} \cdot \left (b \cdot h^3 - b \cdot h_w^3 + t_w \cdot h_w^3 \right )[/tex]

[tex]I_c[/tex] = 1/12*(0.15*0.29^3 - 0.15*0.25^3 + 0.01*0.25^3) = 1.2257083 × 10⁻⁴ m⁴

Substituting the known values gives;

[tex]I_c = \dfrac{1}{12} \cdot \left (0.15 \times 0.29^3 - 0.15 \times 0.25^3 + 0.01 \times 0.25^3 \right ) = 1.2257083\bar 3 \times 10^{-4}[/tex]

[tex]I_c[/tex] = 1.2257083[tex]\bar 3[/tex] × 10⁻⁴ m⁴

From which we have;

[tex]4,500,000 = \dfrac{W}{8 \times 1.225708\bar 3 \times 10 ^{-4}\times 0.01} \times \left (0.15 \times 0.29^2 - 0.15 \times 0.25^2 + 0.01 \times 0.25^2 \right )[/tex]

Which gives;

W = 11,416.6879 N

[tex]\sigma _{b.max} = \dfrac{M_c}{I_c}[/tex]

[tex]\sigma _{b.max}[/tex] = 1500 N/cm² = 15,000,000 N/m²

[tex]M_c[/tex] = 15,000,000 × 1.2257083 × 10⁻⁴ ≈ 1838.56245 N·m²

From Which we have;

[tex]M_{max} = \dfrac{W \cdot L}{4}[/tex]

[tex]L = \dfrac{4 \cdot M_{max}}{W} = \dfrac{4 \times 1838.5625}{11,416.6879} \approx 0.64417[/tex]

L ≈ 0.64417 m ≈ 64.417 cm.

ACCESS MORE