Answer:
[tex]\dfrac{dy}{dx}=\dfrac{4}{25}[/tex]
Explanation:
The given expression is :
[tex]y=\dfrac{(x-1)}{(x+3)}[/tex]
We need to find dy/dx at x = 2
[tex]\dfrac{dy}{dx}=\dfrac{d}{dx}(\dfrac{x-1}{x+3})\\\\=\dfrac{(x+3)\dfrac{d}{dx}(x-1)-(x-1)\dfrac{d}{dx}(x+3)}{(x+3)^2}\\\\=\dfrac{x+3-(x-1)}{(x+3)^2}\\\\=\dfrac{x+3-x+1}{(x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{4}{(x+3)^2}[/tex]
Put x = 2 in above expression
[tex]\dfrac{dy}{dx}|x=2=\dfrac{4}{(2+3)^2}\\\\=\dfrac{4}{25}[/tex]
Hence, the value at dy/dx is [tex]\dfrac{4}{25}[/tex]