Respuesta :
Answer:
[tex]P(F\ and\ R) = 0.21[/tex]
[tex]P(F\ and\ R^{-}) = 0.14[/tex]
[tex]P(R^{-}|F)= 0.40[/tex]
[tex]P(F^{-} and\ R) = 0.39[/tex]
[tex]P(F^{-}\ and\ R^{-}) =0.26[/tex]
[tex]P(F^{-}) =0.65[/tex]
Step-by-step explanation:
The variables have been defined in the question as:
[tex]F = Female\ Moviegoer[/tex]
[tex]F^{'} = Male\ Moviegoer[/tex]
[tex]R = Romantic\ Comedy[/tex]
[tex]R^{'} = War\ File[/tex]
Also, we have the following given parameters:
[tex]P(F) = 0.35[/tex]
[tex]P(F^{-}) =0.65[/tex]
[tex]P(R) =0.60[/tex]
[tex]P(R^{-}) = 0.40[/tex]
The solution is as follows:
[tex]a.\ P(F\ and\ R)[/tex]
[tex]P(F\ and\ R) = P(F) * P(R)[/tex]
Substitute values for P(F) and P(R)
[tex]P(F\ and\ R) = 0.35 * 0.60[/tex]
[tex]P(F\ and\ R) = 0.21[/tex]
[tex]b.\ P(F\ and\ R^{-})[/tex]
[tex]P(F\ and\ R^{-}) = P(F) * P(R^{-})[/tex]
Substitute values for P(F) and P(R-)
[tex]P(F\ and\ R^{-}) = 0.35 * 0.40[/tex]
[tex]P(F\ and\ R^{-}) = 0.14[/tex]
[tex]c.\ P(R^{-}|F)[/tex]
[tex]P(R^{-}|F)=\frac{P(R^{-}\ and\ F)}{P(F)}[/tex]
[tex]P(R^{-}|F)=\frac{P(R^{-})\ *\ P(F)}{P(F)}[/tex]
Substitute values for P(F) and P(R-)
[tex]P(R^{-}|F)=\frac{0.40 * 0.35}{0.35}[/tex]
[tex]P(R^{-}|F)= 0.40[/tex]
This implies that both events are independent
[tex]d.\ P(F^{-} and\ R)[/tex]
[tex]P(F^{-} and\ R) = P(F^{-}) * P(R)[/tex]
Substitute values for P(F-) and P(R)
[tex]P(F^{-} and\ R) = 0.65 * 0.60[/tex]
[tex]P(F^{-} and\ R) = 0.39[/tex]
[tex]e.\ P(F^{-}\ and\ R^{-})[/tex]
[tex]P(F^{-}\ and\ R^{-}) =P(F^{-}) * P(R^{-})[/tex]
Substitute values for P(F-) and P(R-)
[tex]P(F^{-}\ and\ R^{-}) =0.65 * 0.40[/tex]
[tex]P(F^{-}\ and\ R^{-}) =0.26[/tex]
[tex]f.\ P(F^{-})[/tex]
[tex]P(F^{-}) =0.65[/tex] --- Given