Answer:
Angular displacement=68.25 rad
Explanation:
Circular Motion
If the angular speed varies from ωo to ωf in a time t, then the angular acceleration is given by:
[tex]\displaystyle \alpha=\frac{\omega_f-\omega_o}{t}[/tex]
The angular displacement is given by:
[tex]\displaystyle \theta=\omega_o.t+\frac{\alpha.t^2}{2}[/tex]
The wheel decelerates from ωo=13.5 rad/s to ωf=6 rad/s in t=7 s, thus:
[tex]\displaystyle \alpha=\frac{6-13.5}{7}[/tex]
[tex]\displaystyle \alpha=\frac{-7.5}{7}[/tex]
[tex]\displaystyle \alpha=-1.071 \ rad/s^2[/tex]
Thus, the angular displacement is:
[tex]\displaystyle \theta=13.5*7+\frac{-1.071*7^2}{2}[/tex]
[tex]\displaystyle \theta=94.5-26.25[/tex]
[tex]\boxed{\displaystyle \theta=68.25\ rad}[/tex]
Angular displacement=68.25 rad