Answer:
[tex]Sum = (k+1)(k+2)[/tex]
Step-by-step explanation:
Given
k + 1 even numbers
Required
Their sum
This question will be solved using the sum of nth term of an AP
[tex]S_n = \frac{n}{2}(2a + (n - 1)d)[/tex]
Where
a = the first even number
[tex]a = 2[/tex]
n = number of terms
[tex]n =k +1[/tex]
d = difference between consecutive even numbers
[tex]d = 2[/tex]
So, the expression becomes:
[tex]Sum = \frac{k+1}{2}(2 * 2 + (k + 1 - 1) * 2)[/tex]
[tex]Sum = \frac{k+1}{2}(2 * 2 + (k) * 2)[/tex]
[tex]Sum = \frac{k+1}{2}(4 + 2k)[/tex]
[tex]Sum = \frac{(k+1)(4 + 2k)}{2}[/tex]
Factorize 4 + 2k
[tex]Sum = \frac{(k+1)*2*(2 + k)}{2}[/tex]
[tex]Sum = (k+1)*(2 + k)[/tex]
[tex]Sum = (k+1)*(k+2)[/tex]
[tex]Sum = (k+1)(k+2)[/tex]