Respuesta :

Answer:

[tex]Sum = (k+1)(k+2)[/tex]

Step-by-step explanation:

Given

k + 1 even numbers

Required

Their sum

This question will be solved using the sum of nth term of an AP

[tex]S_n = \frac{n}{2}(2a + (n - 1)d)[/tex]

Where

a = the first even number

[tex]a = 2[/tex]

n = number of terms

[tex]n =k +1[/tex]

d = difference between consecutive even numbers

[tex]d = 2[/tex]

So, the expression becomes:

[tex]Sum = \frac{k+1}{2}(2 * 2 + (k + 1 - 1) * 2)[/tex]

[tex]Sum = \frac{k+1}{2}(2 * 2 + (k) * 2)[/tex]

[tex]Sum = \frac{k+1}{2}(4 + 2k)[/tex]

[tex]Sum = \frac{(k+1)(4 + 2k)}{2}[/tex]

Factorize 4 + 2k

[tex]Sum = \frac{(k+1)*2*(2 + k)}{2}[/tex]

[tex]Sum = (k+1)*(2 + k)[/tex]

[tex]Sum = (k+1)*(k+2)[/tex]

[tex]Sum = (k+1)(k+2)[/tex]

RELAXING NOICE
Relax