Answer:
No real solutions
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Algebra II
- Imaginary Numbers: √-1 = i
Step-by-step explanation:
Step 1: Define
-4x² = 5x + 9
Step 2: Rewrite
Find standard form.
- Subtract 5x on both sides: -4x² - 5x = 9
- Subtract 9 on both sides: -4x² - 5x - 9 = 0
Step 3: Identify Variables
a = -4
b = -5
c = -9
Step 4: Solve for x
- Substitute [QF]: [tex]x=\frac{5\pm\sqrt{(-5)^2-4(-4)(-9)} }{2(-4)}[/tex]
- Exponents: [tex]x=\frac{5\pm\sqrt{25-4(-4)(-9)} }{2(-4)}[/tex]
- Multiply: [tex]x=\frac{5\pm\sqrt{25-144} }{-8}[/tex]
- Subtract: [tex]x=\frac{5\pm\sqrt{-119} }{-8}[/tex]
- Factor: [tex]x=\frac{5\pm\sqrt{-1} \sqrt{119} }{-8}[/tex]
- Simplify: [tex]x=\frac{5\pm i\sqrt{119} }{-8}[/tex]
Here we see that we get imaginary numbers.
∴ the quadratic would have no real roots.