Respuesta :

Space

Answer:

No real solutions

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Algebra II

  • Imaginary Numbers: √-1 = i

Step-by-step explanation:

Step 1: Define

-4x² = 5x + 9

Step 2: Rewrite

Find standard form.

  1. Subtract 5x on both sides:                    -4x² - 5x = 9
  2. Subtract 9 on both sides:                      -4x² - 5x - 9 = 0

Step 3: Identify Variables

a = -4

b = -5

c = -9

Step 4: Solve for x

  1. Substitute [QF]:                    [tex]x=\frac{5\pm\sqrt{(-5)^2-4(-4)(-9)} }{2(-4)}[/tex]
  2. Exponents:                           [tex]x=\frac{5\pm\sqrt{25-4(-4)(-9)} }{2(-4)}[/tex]
  3. Multiply:                                [tex]x=\frac{5\pm\sqrt{25-144} }{-8}[/tex]
  4. Subtract:                               [tex]x=\frac{5\pm\sqrt{-119} }{-8}[/tex]
  5. Factor:                                   [tex]x=\frac{5\pm\sqrt{-1} \sqrt{119} }{-8}[/tex]
  6. Simplify:                                [tex]x=\frac{5\pm i\sqrt{119} }{-8}[/tex]

Here we see that we get imaginary numbers.

∴ the quadratic would have no real roots.

ACCESS MORE
EDU ACCESS
Universidad de Mexico