Respuesta :
Answer:
See Explanation
Explanation:
Solving (4): 0.84554 as a fraction
The above number is to 5 decimal places, so the fraction equivalent is:
[tex]Fraction = \frac{84554}{100000}[/tex]
Divide numerator and denominator by 2
[tex]Fraction = \frac{84554/2}{100000/2}[/tex]
[tex]Fraction = \frac{42277}{50000}[/tex]
Solving (5):
[tex]A = (5,3)[/tex] [tex]B = (1,9)[/tex]
The midpoint, M is calculated as follows:
[tex]M = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Where
[tex](x_1,y_1) = (5,3)[/tex] [tex](x_2,y_2) = (1,9)[/tex]
[tex]M = (\frac{5+1}{2},\frac{3+9}{2})[/tex]
[tex]M = (\frac{6}{2},\frac{12}{2})[/tex]
[tex]M = (3,6)[/tex]
The distance, D is calculated using:
[tex]D = \sqrt{(x_1 - x_2)^2+(y_1 - y_2)^2}[/tex]
[tex]D = \sqrt{(5 - 1)^2+(3 - 9)^2}[/tex]
[tex]D = \sqrt{(4)^2+(-6)^2}[/tex]
[tex]D = \sqrt{16+36}[/tex]
[tex]D = \sqrt{52}[/tex]
[tex]D = 7.21[/tex]
Solving (1): The expression for f(x) is not clear. So, I'll make use of:
[tex]f(x) = 3x^2 -2x[/tex]
[tex]Domain = \{0,1,2,3\}[/tex]
Substitute each value of the domain in [tex]f(x) = 3x^2 -2x[/tex]
[tex]f(0) = 3(0)^2 - 2(0) = 0 - 0 = 0[/tex]
[tex]f(1) = 3(1)^2 - 2(1) = 3 - 2 = 1[/tex]
[tex]f(2) = 3(2)^2 - 2(2) = 12 - 4 = 8[/tex]
[tex]f(3) = 3(3)^2 - 2(3) = 27 - 6 = 21[/tex]
The range is:
[tex]Range = \{0,1,8,21\}[/tex]
Solving (2):
[tex]Height (H) = 15cm[/tex] [tex]Radius(R) = 7cm[/tex]
Shape: Open Cylinder
The surface area is calculated as:
[tex]Area = 2\pi rh+ \pi r^2[/tex]
[tex]Area = 2 * 3.14 * 7 * 15 + 3.14 * 7^2[/tex]
[tex]Area = 659.4 + 153.86[/tex]
[tex]Area = 813.26[/tex]
Solving (3):
The value of a is not clear. So, I'll assume that a is a
Given that
[tex]b = 3a[/tex]
Find [tex]|a+b|[/tex]
Substitute 3a for b
[tex]|a + b| = |a + 3a|[/tex]
[tex]|a + b| = |4a|[/tex]
Absolute value of 4a is 4a. So,
[tex]|a + b| = 4a[/tex]
Solving (9):
Given
[tex]P= 20000000[/tex] --- Principal
[tex]R = 1\%\ per\ annum[/tex] --- Rate
[tex]n = 2[/tex] --- Time in years
The amount (A) is calculated as follows:
[tex]A = P* (1 + \frac{R}{100})^n[/tex]
[tex]A = 20000000 * (1 + \frac{1}{100})\²[/tex]
[tex]A = 20000000 * (101/100)^2[/tex]
[tex]A = 20000000 * 1.0201[/tex]
[tex]A = 20402000[/tex]
Hence, the amount at the end of 2 years is:
[tex]Amount = 20402000[/tex]