Answer:
The angular acceleration of the wheel is 15.21 rad/s².
Explanation:
Given that,
Time = 5 sec
Final angular velocity = 96.0 rad/s
Angular displacement = 28.0 rev = 175.84 rad
Let [tex]\alpha[/tex] be the angular acceleration
We need to calculate the angular acceleration
Using equation of motion
[tex]\theta=\omega_{i} t+\dfrac{1}{2}\alpha t^2[/tex]
Put the value in the equation
[tex]175.84=\omega_{i}\times 5+\dfrac{1}{2}\times\alpha\times(5)^2[/tex]
[tex]175.84=\omega_{i}\times 5+12.5\alpha[/tex]......(I)
Again using equation of motion
[tex]\omega_{f}=\omega_{i}+\alpha t[/tex]
Put the value in the equation
[tex]96.0=\omega_{i}+\alpha \times 5[/tex]
On multiply by 5 in both sides
[tex]480=\omega_{i}\times 5+\alpha\times 25[/tex]....(II)
On subtract equation (I) from equation (II)
[tex]480-175.84=\alpha(25-5)[/tex]
[tex]304.16=\alpha\times20[/tex]
[tex]\alpha=\dfrac{304.16}{20}[/tex]
[tex]\alpha=15.21\ rad/s^2[/tex]
Hence, The angular acceleration of the wheel is 15.21 rad/s².