g A rotating wheel requires 5.00 s to rotate 28.0 revolutions. Its angular velocity at the end of the 5.00-s interval is 96.0 rad/s. What is the constant angular acceleration (in rad/s) of the wheel

Respuesta :

Answer:

The angular acceleration of the wheel is 15.21 rad/s².

Explanation:

Given that,

Time = 5 sec

Final angular velocity = 96.0 rad/s

Angular displacement = 28.0 rev = 175.84 rad

Let [tex]\alpha[/tex] be the angular acceleration

We need to calculate the angular acceleration

Using equation of motion

[tex]\theta=\omega_{i} t+\dfrac{1}{2}\alpha t^2[/tex]

Put the value in the equation

[tex]175.84=\omega_{i}\times 5+\dfrac{1}{2}\times\alpha\times(5)^2[/tex]

[tex]175.84=\omega_{i}\times 5+12.5\alpha[/tex]......(I)

Again using equation of motion

[tex]\omega_{f}=\omega_{i}+\alpha t[/tex]

Put the value in the equation

[tex]96.0=\omega_{i}+\alpha \times 5[/tex]

On multiply by 5 in both sides

[tex]480=\omega_{i}\times 5+\alpha\times 25[/tex]....(II)

On subtract equation (I) from equation (II)

[tex]480-175.84=\alpha(25-5)[/tex]

[tex]304.16=\alpha\times20[/tex]

[tex]\alpha=\dfrac{304.16}{20}[/tex]

[tex]\alpha=15.21\ rad/s^2[/tex]

Hence, The angular acceleration of the wheel is 15.21 rad/s².

ACCESS MORE
EDU ACCESS
Universidad de Mexico