Answer:
[tex]Area = -2.3147[/tex]
Step-by-step explanation:
Given
[tex]$r = 1 + \cos \theta$[/tex]
Required
Determine the area with coordinates [tex](2,0)[/tex]
The area is represented as:
[tex]Area = \frac{1}{2}\int\limits^b_a {r^2} \, d\theta[/tex]
Where
[tex]$r = 1 + \cos \theta$[/tex]
and
[tex](a,b) = (2,0)[/tex]
Substitute values for r, a and b in
[tex]Area = \frac{1}{2}\int\limits^b_a {r^2} \, d\theta[/tex]
[tex]Area = \frac{1}{2}\int\limits^0_2 {(1 + cos\theta)^2} \, d\theta[/tex]
Expand
[tex]Area = \frac{1}{2}\int\limits^0_2 {(1 + cos\theta)(1 + cos\theta)} \, d\theta[/tex]
[tex]Area = \frac{1}{2}\int\limits^0_2 {(1 + 2cos\theta+cos^2\theta} )\, d\theta[/tex]
By integratin the above, we get:
[tex]Area = \frac{1}{2}*\frac{(cos(\theta) + 4)sin(\theta) + 3\theta}{2}[0,2][/tex]
[tex]Area = \frac{(cos(\theta) + 4)sin(\theta) + 3\theta}{4}[0,2][/tex]
Substitute 0 and 2 for [tex]\theta[/tex] one after the other
[tex]Area = \frac{(cos(0) + 4)sin(0) + 3*0}{4} - \frac{(cos(2) + 4)sin(2) + 3*2}{4}[/tex]
[tex]Area = \frac{(cos(0) + 4)sin(0)}{4} - \frac{(cos(2) + 4)sin(2) + 6}{4}[/tex]
[tex]Area = \frac{(1 + 4)*0}{4} - \frac{(cos(2) + 4)sin(2) + 6}{4}[/tex]
[tex]Area = - \frac{(cos(2) + 4)sin(2) + 6}{4}[/tex]
[tex]Area = \frac{-sin(2)(cos(2) + 4) - 6}{4}[/tex]
Get sin(2) and cos(2) in radians
[tex]Area = \frac{-0.9093 * (-0.4161 + 4) - 6}{4}[/tex]
[tex]Area = \frac{-9.2588}{4}[/tex]
[tex]Area = -2.3147[/tex]