Respuesta :
Answer:
[tex]\displaystyle \int {(12 - lnx)} \, dx = x[13 - ln(x)] + C[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
- U-Solve
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {(12 - lnx)} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {(12 - lnx)} \, dx = \int {12} \, dx - \int {lnx} \, dx[/tex]
- [1st Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12\int {} \, dx - \int {lnx} \, dx[/tex]
- [1st Integral] Reverse Power Rule: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12x - \int {lnx} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = lnx[/tex]
- [u] Differentiate [Logarithmic Differentiation]: [tex]\displaystyle du = \frac{1}{x} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = dx[/tex]
- [dv] Integration Rule [Reverse Power Rule]: [tex]\displaystyle v = x[/tex]
Step 4: Integrate Pt. 3
- [Integral] Integration by Parts: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - \int { \bigg( x \cdot \frac{1}{x} \bigg) } \, dx \bigg][/tex]
- [Integrand] Simplify: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - \int {} \, dx \bigg][/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - x + C \bigg][/tex]
- Simplify: [tex]\displaystyle \int {(12 - lnx)} \, dx = 12x - xlnx + x + C[/tex]
- Factor: [tex]\displaystyle \int {(12 - lnx)} \, dx = x[12 - ln(x) + 1] + C[/tex]
- Simplify: [tex]\displaystyle \int {(12 - lnx)} \, dx = x[13 - ln(x)] + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
