Respuesta :
Answer:
Explanation:
(a)
From the given information:
The initial velocity [tex]v_1[/tex] = 5 m/s
The direction of the angle θ = 30°
Therefore, the component along the x-axis = [tex]v_1 \ cos \ \theta[/tex]
[tex]v_{1 \ x } = 5 \ cos \ 30^0[/tex]
[tex]v_{1x} = 4.33 \ m/s[/tex]
The component along the y-axis = [tex]v_2 { \ sin \ \theta}[/tex]
[tex]v_{1 \ y } = 5 \ sin \ 30^0[/tex]
[tex]v_{1 \ y } = 2.5 \ m/s[/tex]
To find the final velocity( reflected velocity)
using the same magnitude [tex]v_2 = 5 \ m/s[/tex]
The angle from the x-axis can be [tex]\theta_r = 90^0+60^0[/tex]
= 150°
Thus, the component along the x-axis = [tex]v_2 \ cos \theta _r[/tex]
[tex]v_{2x} = - 0.433 \ m/s[/tex]
The component along the y-axis = [tex]v_2 \ sin \theta_r[/tex]
[tex]v_{2y} = 5 \ sin \ 150^0[/tex]
[tex]v_{2y} = 2.5 \ m/s[/tex]
(b)
The velocity [tex]v_1[/tex] can be written as in vector form.
[tex]v_1 ^{\to} = v_1 x \hat {i} + v_1 y \hat {j}[/tex]
[tex]v_1 ^{\to} =4.33 \ \hat {i} + 2.5 \ \hat {j}[/tex] ---- (1)
The reflected velocity in vector form can be computed as:
[tex]v_2 ^{\to} = v_2 x \hat {i} + v_2 y \hat {j}[/tex]
[tex]v_2 ^{\to} =-4.33 \ \hat {i} + 2.5 \ \hat {j}[/tex] --- (2)
The change in velocity = [tex]v_2 ^{\to} - v_1 ^{\to}[/tex]
[tex]\Delta v ^{\to} = - 4.33 \hat i + 2.5 \hat j - 4.33 \hat i - 2.5 \hat j[/tex]
[tex]\Delta v ^{\to} = - 8.66 \hat { i }[/tex]
(c)
The magnitude of change in velocity = [tex]| \Delta V |[/tex]
[tex]| \Delta V |[/tex] = 8.66 m/s