Respuesta :
Answer:
Step-by-step explanation:
Given that:
The equation of the damped vibrating spring is y" + by' +2y = 0
(a) To convert this 2nd order equation to a system of two first-order equations;
let y₁ = y
y'₁ = y' = y₂
So;
y'₂ = y"₁ = -2y₁ -by₂
Thus; the system of the two first-order equation is:
y₁' = y₂
y₂' = -2y₁ - by₂
(b)
The eigenvalue of the system in terms of b is:
[tex]\left|\begin{array}{cc}- \lambda &1&-2\ & -b- \lambda \end{array}\right|=0[/tex]
[tex]-\lambda(-b - \lambda) + 2 = 0 \ \\ \\\lambda^2 +\lambda b + 2 = 0[/tex]
[tex]\lambda = \dfrac{-b \pm \sqrt{b^2 - 8}}{2}[/tex]
[tex]\lambda_1 = \dfrac{-b + \sqrt{b^2 -8}}{2} ; \ \lambda _2 = \dfrac{-b - \sqrt{b^2 -8}}{2}[/tex]
(c)
Suppose [tex]b > 2\sqrt{2}[/tex], then λ₂ < 0 and λ₁ < 0. Thus, the node is stable at equilibrium.
(d)
From λ² + λb + 2 = 0
If b = 3; we get
[tex]\lambda^2 + 3\lambda + 2 = 0 \\ \\ (\lambda + 1) ( \lambda + 2 ) = 0\\ \\ \lambda = -1 \ or \ \lambda = -2 \\ \\[/tex]
Now, the eigenvector relating to λ = -1 be:
[tex]v = \left[\begin{array}{ccc}+1&1\\-2&-2\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right][/tex]
[tex]\sim v = \left[\begin{array}{ccc}1&1\\0&0\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right][/tex]
Let v₂ = 1, v₁ = -1
[tex]v = \left[\begin{array}{c}-1\\1\\\end{array}\right][/tex]
Let Eigenvector relating to λ = -2 be:
[tex]m = \left[\begin{array}{ccc}2&1\\-2&-1\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right][/tex]
[tex]\sim v = \left[\begin{array}{ccc}2&1\\0&0\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right][/tex]
Let m₂ = 1, m₁ = -1/2
[tex]m = \left[\begin{array}{c}-1/2 \\1\\\end{array}\right][/tex]
∴
[tex]\left[\begin{array}{c}y_1\\y_2\\\end{array}\right]= C_1 e^{-t} \left[\begin{array}{c}-1\\1\\\end{array}\right] + C_2e^{-2t} \left[\begin{array}{c}-1/2\\1\\\end{array}\right][/tex]
So as t → ∞
[tex]\mathbf{ \left[\begin{array}{c}y_1\\y_2\\\end{array}\right]= \left[\begin{array}{c}0\\0\\\end{array}\right] \ \ so \ stable \ at \ node \ \infty }[/tex]
