Respuesta :
find the distance between them to find diameter
for (x1,y1) and (x2,y2)
D=[tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
for (2,1) and (5,5)
D=[tex] \sqrt{(5-2)^2+(5-1)^2} [/tex]
D=[tex] \sqrt{(3)^2+(4)^2} [/tex]
D=[tex] \sqrt{9+16} [/tex]
D=[tex] \sqrt{25} [/tex]
D=5
area=pir²
d/2=r
5/2=r=2.5
area=pi2.5²
area=6.25pi
for (x1,y1) and (x2,y2)
D=[tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
for (2,1) and (5,5)
D=[tex] \sqrt{(5-2)^2+(5-1)^2} [/tex]
D=[tex] \sqrt{(3)^2+(4)^2} [/tex]
D=[tex] \sqrt{9+16} [/tex]
D=[tex] \sqrt{25} [/tex]
D=5
area=pir²
d/2=r
5/2=r=2.5
area=pi2.5²
area=6.25pi
Area of the circle in terms of [tex]\pi[/tex] =[tex]\frac{25\pi }{4}[/tex]
Given :
the endpoints of a diameter of a circle are A (2,1) and B (5,5)
Area of the circle=[tex]\pi r^2[/tex] where 'r' is the radius of the circle
Lets find the length of the diameter using the end points by distance formula
[tex]AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\A \; is \; (2,1) , B \; is \; (5,5)\\AB=\sqrt{(5-2)^2+(5-1)^2}=\sqrt{25} =5[/tex]
Diameter =5
Radius = diameter /2=[tex]\frac{5}{2}[/tex]
Area of the circle =[tex]\pi r^2=\pi (\frac{5}{2})^2=\frac{25\pi }{4}[/tex]
Area of the circle =[tex]\frac{25\pi }{4}[/tex]
Learn more : brainly.com/question/15066943