Respuesta :

Answer:

The two values of x are 2n*pi + pi/12 and 2n*pi -5pi/12

Explanation:

The given equation is

Sin x +√3 Cosx= √2

Upon dividing the equation by 2 we get

 [tex]\frac{1}{2}Sinx + \frac{\sqrt{3} }{2}Cosx = \frac{\sqrt{2} }{2}[/tex]

Sin([tex]\frac{pi}{6}[/tex])*Sinx + Cos([tex]\frac{pi}{6}[/tex])*Cosx = [tex]\frac{1}{\sqrt{2} }[/tex]

This makes the formula of

CosACosB + SinASinB = Cos(A-B)

 Cos(x-[tex]\frac{pi}{6}[/tex]) = [tex]\frac{1}{\sqrt{2} }[/tex]

cos(x- pi/6) = cos(pi/4)

upon writing the general equation we get

x-pi/6 = 2n*pi ± pi/4

x = 2n*pi ± pi/4 -pi/6

so we will have two solutions

x = 2n*pi + pi/4 -pi/6

  = 2n*pi + pi/12

and

x = 2n*pi - pi/4 -pi/6

  = 2n*pi -5pi/12

Therefore the two values of x are 2n*pi + pi/12 and 2n*pi -5pi/12.

ACCESS MORE