Respuesta :

Answer:

2.5 hours

Step-by-step explanation:

Given

The information in the attachment

To solve this question, first we calculate the slope

[tex](t_1,B_1) = (1,19,5\%)[/tex]

[tex](t_2,B_2) = (2,13\%)[/tex]

The slope is:

[tex]m = \frac{B_2 - B_1}{t_2 - t_1}[/tex]

[tex]m = \frac{13\% - 19.5\%}{2-1}[/tex]

[tex]m = \frac{-0.065}{1}[/tex]

[tex]m = -0.065}[/tex]

The equation is calculated as:

[tex]B - b_3 = m(t - t_3)[/tex]

Where

[tex]m = -0.065}[/tex]

[tex](t_3,B_3) = (3,6.5\%)[/tex]

This gives

[tex]B - 6.5\% = -0.065(t - 3)[/tex]

[tex]B - 6.5\% = -0.065t +0.195[/tex]

[tex]B -0.065 = -0.065t +0.195[/tex]

[tex]B = -0.065t +0.195 +0.065[/tex]

[tex]B = -0.065t +0.26[/tex]

To calculate the time at 9.75%.

We take B = 9.75%

So, we have:

[tex]9.75\% = -0.065t +0.26[/tex]

Solve for t

[tex]0.0975= -0.065t +0.26[/tex]

Collect Like Terms

[tex]0.065t= -0.0975 +0.26[/tex]

[tex]0.065t= 01625[/tex]

[tex]t = 0.1625/0.065[/tex]

[tex]t = 2.5[/tex]

Hence, it will take 2.5 hours.

ACCESS MORE