Respuesta :

Given:

Functions are

[tex]f(x)=\dfrac{1}{3}x^2+4[/tex]

[tex]g(x)=9x-12[/tex]

To find:

The value of [tex]g(f(x)).[/tex].

Solution:

We have,

[tex]g(f(x))=g(\dfrac{1}{3}x^2+4)[/tex]        [tex][\because f(x)=\dfrac{1}{3}x^2+4][/tex]

[tex]g(f(x))=9(\dfrac{1}{3}x^2+4)-12[/tex]        [tex][\because g(x)=9x-12][/tex]

[tex]g(f(x))=9(\dfrac{1}{3}x^2)+9(4)-12[/tex]

[tex]g(f(x))=3x^2+36-12[/tex]

[tex]g(f(x))=3x^2+24[/tex]

Therefore, the required function is [tex]g(f(x))=3x^2+24[/tex].

Following are the calculation to the given function:

Given:

[tex]f(x)=\frac{1}{3}x^2+4 \\\\g(x)=9x-12[/tex]

To find:

[tex]g(f(x))=?[/tex]

Solution:

[tex]f(x)=\frac{1}{3}x^2+4 \\\\g(x)=9x-12[/tex]

[tex]\to g(f(x))=g( \frac{1}{3} x^2+4) \\\\[/tex]

                [tex]=9( \frac{1}{3} x^2+4)-12 \\\\=\frac{9}{3}x^2+36-12 \\\\=3x^2+24 \\[/tex]

Therefore, the answer is "[tex]24+3x^2[/tex]" .

Learn more about the g(f(x)):

brainly.com/question/17022176

ACCESS MORE