Respuesta :
Given:
Functions are
[tex]f(x)=\dfrac{1}{3}x^2+4[/tex]
[tex]g(x)=9x-12[/tex]
To find:
The value of [tex]g(f(x)).[/tex].
Solution:
We have,
[tex]g(f(x))=g(\dfrac{1}{3}x^2+4)[/tex] [tex][\because f(x)=\dfrac{1}{3}x^2+4][/tex]
[tex]g(f(x))=9(\dfrac{1}{3}x^2+4)-12[/tex] [tex][\because g(x)=9x-12][/tex]
[tex]g(f(x))=9(\dfrac{1}{3}x^2)+9(4)-12[/tex]
[tex]g(f(x))=3x^2+36-12[/tex]
[tex]g(f(x))=3x^2+24[/tex]
Therefore, the required function is [tex]g(f(x))=3x^2+24[/tex].
Following are the calculation to the given function:
Given:
[tex]f(x)=\frac{1}{3}x^2+4 \\\\g(x)=9x-12[/tex]
To find:
[tex]g(f(x))=?[/tex]
Solution:
[tex]f(x)=\frac{1}{3}x^2+4 \\\\g(x)=9x-12[/tex]
[tex]\to g(f(x))=g( \frac{1}{3} x^2+4) \\\\[/tex]
[tex]=9( \frac{1}{3} x^2+4)-12 \\\\=\frac{9}{3}x^2+36-12 \\\\=3x^2+24 \\[/tex]
Therefore, the answer is "[tex]24+3x^2[/tex]" .
Learn more about the g(f(x)):
brainly.com/question/17022176