Respuesta :

Answer:

[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}} =20q^{17}w^9[/tex]

Step-by-step explanation:

Given

[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]

Required

Determine the equivalent expression

[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]

Simplify the first fraction

[tex]\frac{5q^5w^7}{w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]

Apply law of indices on the first fraction;

[tex]5q^5w^{7-3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]

[tex]5q^5w^4.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]

[tex]\ \frac{5q^5w^4*4\left(q^6\right)^2}{w^{-5}}[/tex]

Apply law of indices:

[tex]5q^5w^4*4\left(q^6\right)^2 * w^{5}[/tex]

Evaluate the bracket

[tex]5q^5w^4*4 * q^{12} * w^{5}[/tex]

Collect Like Terms

[tex]5*4q^5* q^{12}*w^4 * w^{5}[/tex]

[tex]20q^5* q^{12}*w^4 * w^{5}[/tex]

[tex]20q^{5+12}*w^{4+5}[/tex]

[tex]20q^{17}w^9[/tex]

Hence:

[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}} =20q^{17}w^9[/tex]

ACCESS MORE