Answer:
[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}} =20q^{17}w^9[/tex]
Step-by-step explanation:
Given
[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]
Required
Determine the equivalent expression
[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]
Simplify the first fraction
[tex]\frac{5q^5w^7}{w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]
Apply law of indices on the first fraction;
[tex]5q^5w^{7-3}.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]
[tex]5q^5w^4.\ \frac{4\left(q^6\right)^2}{w^{-5}}[/tex]
[tex]\ \frac{5q^5w^4*4\left(q^6\right)^2}{w^{-5}}[/tex]
Apply law of indices:
[tex]5q^5w^4*4\left(q^6\right)^2 * w^{5}[/tex]
Evaluate the bracket
[tex]5q^5w^4*4 * q^{12} * w^{5}[/tex]
Collect Like Terms
[tex]5*4q^5* q^{12}*w^4 * w^{5}[/tex]
[tex]20q^5* q^{12}*w^4 * w^{5}[/tex]
[tex]20q^{5+12}*w^{4+5}[/tex]
[tex]20q^{17}w^9[/tex]
Hence:
[tex]\frac{10q^5w^7}{2w^3}.\ \frac{4\left(q^6\right)^2}{w^{-5}} =20q^{17}w^9[/tex]