Look at this formula showing the relationship between temperature degrees Celsius and temperature in degrees Fahrenheit C = 5/9 * (P - 32) Which of these equations represents the given formula written in terms of H = 9/5 * (C + 32) H = 9/5 * (C - 32) P = 9/5 * C + 32 F = 9/5 * C = 32

Respuesta :

Answer:

The equation which represents the given formula written in terms of P is  

P = 9/5 * C + 32

Step-by-step explanation:

Seems the question is: Which of these equations represents the given formula written in terms of P. If so, we will make P the subject of the given formula.

C = 5/9 * (P - 32)

This can be written as

[tex]C = \frac{5}{9} \times (P-32)[/tex]

Multiplying both sides by 9, we get

[tex]9 \times C = 9 \times \frac{5}{9} \times (P-32)[/tex]

[tex]9C = 5 \times (P - 32)\\[/tex]

Now, divide both sides by 5, we get

[tex]\frac{9C}{5} = \frac{5 \times (P - 32)}{5}[/tex]

This gives

[tex]\frac{9}{5} \times C = P - 32[/tex]

Now, Add 32 to both sides of the equation

[tex]\frac{9}{5} \times C + 32 = P - 32 + 32[/tex]

This becomes

[tex]\frac{9}{5} \times C + 32 = P[/tex]

Hence

[tex]P = \frac{9}{5} \times C + 32[/tex]

That is,  P = 9/5 * C + 32

Hence, the equation which represents the given formula written in terms of P is  P = 9/5 * C + 32.

ACCESS MORE