Triangle GHJ with vertices G(-2, 4), H(3, 6), and J(3, -2) is dilated by a factor of 1/3 centered at the origin. What are the coordinates of G' after the dilation?

Respuesta :

Answer:

The coordinates of G' are [tex]G'(x,y) = \left(-\frac{2}{3}, \frac{4}{3} \right)[/tex].

Step-by-step explanation:

From Linear Algebra, we define the dilation of point G by the following expression:

[tex]G'(x,y) = O(x,y) + k\cdot [G(x,y)-O(x,y)][/tex] (1)

Where:

[tex]O(x,y)[/tex] - Center of dilation, dimensionless.

[tex]k[/tex] - Scale factor, dimensionless.

[tex]G(x,y)[/tex] - Coordinates of point G, dimensionless.

[tex]G'(x,y)[/tex] - Coordinates of point G', dimensionless.

If we know that [tex]O(x,y) = (0,0)[/tex], [tex]k = \frac{1}{3}[/tex], [tex]G(x,y) = (-2,4)[/tex], then the point G' is:

[tex]G'(x,y) = (0,0) + \frac{1}{3}\cdot [(-2,4)-(0,0)][/tex]

[tex]G'(x,y) = \left(-\frac{2}{3}, \frac{4}{3} \right)[/tex]

The coordinates of G' are [tex]G'(x,y) = \left(-\frac{2}{3}, \frac{4}{3} \right)[/tex].

ACCESS MORE