Respuesta :

Answer:

[tex]x = \frac{2}{3}n\pi[/tex]

Step-by-step explanation:

Given

[tex]Tanx + Tan2x + Tan3x = Tanx.Tan2x.Tan3x[/tex]

Required

Find x

Equate the given expression to 0

[tex]Tan\ x + Tan\ 2x + Tan\ 3x - Tan\ x\ .Tan\ 2x\ .Tan\ 3x = 0[/tex]

Factorize:

[tex]Tan\ x + Tan\ 2x + Tan\ 3x(1 - Tan\ x\ .Tan\ 2x) = 0[/tex]

Subtract both [tex]Tan\ 3x(1 - Tan\ x\ .Tan\ 2x)[/tex] from both sides

[tex]Tan\ x + Tan\ 2x + Tan\ 3x(1 - Tan\ x\ .Tan\ 2x) - Tan\ 3x(1 - Tan\ x\ .Tan\ 2x) = 0 - Tan\ 3x(1 - Tan\ x\ .Tan\ 2x)[/tex]

[tex]Tan\ x + Tan\ 2x = - Tan\ 3x(1 - Tan\ x\ .Tan\ 2x)[/tex]

Divide both sides by: [tex](1 - Tan\ x\ .Tan\ 2x)[/tex]

[tex]\frac{Tan\ x + Tan\ 2x}{(1 - Tan\ x\ .Tan\ 2x) } = - Tan\ 3x[/tex]

In trigonometry:

[tex]Tan(3x) = Tan(x + 2x) = \frac{Tan\ x + Tan\ 2x}{(1 - Tan\ x\ .Tan\ 2x) }[/tex]

So,

[tex]\frac{Tan\ x + Tan\ 2x}{(1 - Tan\ x\ .Tan\ 2x) } = - Tan\ 3x[/tex]

is equivalent to:

[tex]Tan\ 3x = - Tan\ 3x[/tex]

Collect Like Terms

[tex]Tan\ 3x+Tan\ 3x = 0[/tex]

[tex]2Tan\ 3x = 0[/tex]

Divide through by 2

[tex]Tan\ 3x = 0[/tex]

In trigonometry:

If

[tex]Tan\ x= 0[/tex] ,

Then [tex]x=2n\pi[/tex]

Where [tex]n \ge 0[/tex]

So, in this case:

[tex]3x = 2n\pi[/tex]

[tex]x = \frac{2}{3}n\pi[/tex]

ACCESS MORE