Respuesta :

Answer:

Step-by-step explanation:

G is the incenter of ΔABC,

Incenter of a triangle is defined by the point where angle bisectors of the interior angles intersect.

10). m∠ABG = m∠CBG = 25°

11). m∠BCG = m∠ACG = 18°

  Therefore, m∠BCA = m∠BCG + m∠ACG = 2×18° = 36°

12). m∠ABC + m∠BAC + m∠ACB = 180°

  2(25)° + m∠BAC + 36° = 180°

    m∠BAC = 180° - 86° = 94°

13). m∠BAG = [tex]\frac{1}{2}[/tex](m∠BAC) = 47°

14). Since, incenter is equidistant from all sides of the triangle,

     Therefore, DG = GF = FE = 4 units

15). In right triangle BEG,

     tan(25)° = [tex]\frac{\text{GE}}{\text{BE}}[/tex]

     BE = [tex]\frac{\text{GE}}{\text{tan}25}[/tex]

           = [tex]\frac{4}{\text{tan}25}[/tex]

     BE = 8.6

16). In right triangle BEG,

     cos(25)° = [tex]\frac{\text{4}}{\text{BG}}[/tex]

     BG = [tex]\frac{4}{\text{cos}25}[/tex] = 4.4

17). In right triangle GEC,

    sin(18)° = [tex]\frac{\text{GE}}{\text{GC}}[/tex]

    GC =  [tex]\frac{\text{4}}{\text{sin}(18)}[/tex] = 12.9

ACCESS MORE