Respuesta :

Answer:

b = 13.8

A = 45°

C = 35°

Step-by-step explanation:

Given:

m<B = 100°

a = 10

c = 8

Required:

b, m<C, and m<A

✔️Find b using Cosine Rule:

b² = a² + c² - 2*ac*Cos(B)

Plug in the values

b² = 10² + 8² - 2*10*8*Cos(100)

b² = 164 - (-27.7837085)

b² = 191.783709

Take the square root of both sides

b = 13.8 (nearest tenth)

✔️Find m<C using Sine rule:

[tex] \frac{Sin(C)}{c} = \frac{Sin(B)}{b} [/tex]

Plug in the values

[tex] \frac{Sin(C)}{8} = \frac{Sin(100)}{13.8} [/tex]

Multiply both sides by 8

[tex] \frac{Sin(C)}{8} \times 8 = \frac{Sin(100)}{13.8} \times 8 [/tex]

[tex] Sin(C) = \frac{Sin(100) \times 8}{13.8} [/tex]

[tex] Sin(C) = 0.5709 [/tex]

[tex] C = Sin^{-1}(0.5709) [/tex]

[tex] C = 35 [/tex] (nearest degree)

m<C = 35°

✔️m<A = 180 - (100 + 35) (sum of triangle)

m<A = 180 - 135

m<A = 45°

ACCESS MORE