Respuesta :

Answer:

[tex]Perimeter = 45ft[/tex]

Step-by-step explanation:

Given

Represent the Length as L and the Width as W.

So, we have the following:

[tex]L = 2W + 3[/tex]

[tex]Area = 65[/tex]

Required

Determine the perimeter

The area of a rectangle is calculated as thus:

[tex]Area = L * W[/tex]

Substititute 65 for Area

[tex]65 = L * W[/tex]

Substitute 2W + 3 for L

[tex]65 = (2W + 3) * W[/tex]

This gives:

[tex]65 = 2W^2 + 3W[/tex]

Equate to 0

[tex]2W^2 + 3W - 65 = 0[/tex]

Expand:

[tex]2W^2 + 10W - 13W - 65 = 0[/tex]

Factorize:

[tex]2W(W + 5) - 13(W + 5) = 0[/tex]

[tex](2W - 13)(W + 5) = 0[/tex]

[tex]2W - 13 = 0\ or\ W + 5 = 0[/tex]

[tex]2W = 13\ or\ W = -5[/tex]

[tex]W = \frac{13}{2}[/tex] or [tex]W = -5[/tex]

But width can't be less than 0.

So:

[tex]W = \frac{13}{2}[/tex]

[tex]W = 6.5[/tex]

Recall that:

[tex]L = 2W + 3[/tex]

[tex]L = 2 * 6.5 + 3[/tex]

[tex]L = 16[/tex]

The perimeter is calculated as thus:

[tex]Perimeter = 2 * (L + W)[/tex]

[tex]Perimeter = 2 * (16 + 6.5)[/tex]

[tex]Perimeter = 45ft[/tex]

ACCESS MORE