Respuesta :
The value of g(f(-7)) is 63/55 and this can be determined by using the given data and the function properties.
Given :
- [tex]\rm f(x) = x^2+6[/tex]
- [tex]\rm g(x) = \dfrac{x+8}{x}[/tex]
First, determine the value of f(-7).
[tex]\rm f(-7) = (-7)^2+6[/tex]
f(-7) = 49 + 6
f(-7) = 55
Now, the expression of g(f(x)) is given by:
[tex]\rm g(f(x)) = \dfrac{x^2+6+8}{x^2+6}[/tex]
[tex]\rm g(f(x)) = \dfrac{x^2+14}{x^2+6}[/tex]
Now, substitute the value of (x = -7) in the above expression.
[tex]\rm g(f(x)) = \dfrac{(-7)^2+14}{(-7)^2+6}[/tex]
[tex]\rm g(f(x)) = \dfrac{49+14}{49+6}[/tex]
[tex]\rm g(f(x)) = \dfrac{63}{55}[/tex]
The value of g(f(-7)) is 63/55 and this can be determined by using the given data and the function properties. Therefore, the correct option is d).
For more information, refer to the link given below:
https://brainly.com/question/21114745