A horizontal pipe contains water at a pressure of 110 kPa flowing with a speed of 1.4 m/s. When the pipe narrows to one half its original diameter, what is (a) the speed and (b) the pressure of the water?

Respuesta :

Answer:

a

  [tex]v_2 = 5.6 \ m/s[/tex]

b

   [tex]P_2 = 80600 \ Pa[/tex]

Explanation:

From the question we are told that  

     The pressure of the water in the pipe is  [tex]P_1= 110 \ kPa = 110 *10^{3 } \ Pa[/tex]

      The speed of the water  is [tex]v_1 = 1.4 \ m/s[/tex]

       The original area of the pipe is  [tex]A_1 = \pi \frac{d^2 }{4}[/tex]

       The  new area of the pipe is  [tex]A_2 = \pi * \frac{[\frac{d}{2} ]^2}{4} = \pi * \frac{\frac{d^2}{4} }{4} = \pi \frac{d^2}{16}[/tex]

         

Generally the continuity equation is mathematically represented as

       [tex]A_1 * v_1 = A_2 * v_2[/tex]

Here [tex]v_2[/tex] is the new velocity  

So

        [tex]\pi * \frac{d^2}{4} * 1.4 = \pi * \frac{d^2}{16} * v_2[/tex]

=>     [tex]\frac{d^2}{4} * 1.4 = \frac{d^2}{16} * v_2[/tex]

=>    [tex]d^2 * 1.4 = \frac{d^2}{4} * v_2[/tex]

=>    [tex]1.4 = 0.25 * v_2[/tex]

=>     [tex]v_2 = 5.6 \ m/s[/tex]

Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the  Bernoulli's equation for constant height to calculate the pressure

This is mathematically represented as

       

             [tex]P_1 + \frac{1}{2} * \rho * v_1 ^2 = P_2 + \frac{1}{2} * \rho * v_2 ^2[/tex]

Here [tex]\rho[/tex] is the density of water with value  [tex]\rho = 1000 \ kg /m^3[/tex]

             [tex]P_2 = P_1 + \frac{1}{2} * \rho [ v_1^2 - v_2^2 ][/tex]

=>          [tex]P_2 = 110 *10^{3} + \frac{1}{2} * 1000 * [ 1.4 ^2 - 5.6 ^2 ][/tex]

=>          [tex]P_2 = 80600 \ Pa[/tex]

ACCESS MORE