Answer: The final volume of the balloon is 335.6 L
Explanation:
To calculate the final volume of the balloon, we use the equation given by combined gas law:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = Initial pressure = 1.2 atm
[tex]P_2[/tex] = Final pressure = [tex]3.00\times 10^{-3}[/tex] atm
[tex]V_1[/tex] = Initial volume = 1.00 L
[tex]V_2[/tex] = Final volume = ?
[tex]T_1[/tex] = Initial temperature = [tex]25^oC=[25+273]=298K[/tex]
[tex]T_2[/tex] = Final temperature = [tex]-23^oC=[-23+273]=250K[/tex]
Putting values in above equation, we get:
[tex]\frac{1.2atm\times 1.00L}{298K}=\frac{3.00\times 10^{-3}atm\times V_2}{250K}\\\\V_2=\frac{1.2\times 1.00\times 250}{298\times 3.00\times 10^{-3}}\\\\V_2=335.6L[/tex]
Hence, the final volume of the balloon is 335.6 L