Respuesta :

Given:

f (-6) = 10 and f (2) = 10?

To find:

The linear function f.

Solution:

If f(x)=y, then the function passes through (x,y).

We have, f (-6) = 10 and f (2) = 10, it means the function passes through (-6,10) and (2,10). So, the equation is

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-10=\dfrac{10-10}{2-(-6)}(x-(-6))[/tex]

[tex]y-10=\dfrac{0}{2+6}(x+6)[/tex]

[tex]y-10=0[/tex]

Adding 10 on both sides, we get

[tex]y=10[/tex]

Function form is

[tex]f(x)=10[/tex]

Therefore, the required function is [tex]f(x)=10[/tex]. It is a constant function.

ACCESS MORE