Given:
f (-6) = 10 and f (2) = 10?
To find:
The linear function f.
Solution:
If f(x)=y, then the function passes through (x,y).
We have, f (-6) = 10 and f (2) = 10, it means the function passes through (-6,10) and (2,10). So, the equation is
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-10=\dfrac{10-10}{2-(-6)}(x-(-6))[/tex]
[tex]y-10=\dfrac{0}{2+6}(x+6)[/tex]
[tex]y-10=0[/tex]
Adding 10 on both sides, we get
[tex]y=10[/tex]
Function form is
[tex]f(x)=10[/tex]
Therefore, the required function is [tex]f(x)=10[/tex]. It is a constant function.