contestada

A ball is throw at an angle of 30 degrees off the horizontal, with an initial velocity of 28 m/s. what is the maximum height the ball will reach?​

Respuesta :

[tex]{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\[/tex]

[tex]\:\:\:\:\bullet\:\:\:\sf{Angle \ of \ projection = 30^{\circ} }[/tex]

[tex]\:\:\:\:\bullet\:\:\:\sf{Initial \ velocity \ of \ projectile = 28 \: m/s^{-1} }[/tex]

[tex]\\[/tex]

[tex]{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\[/tex]

[tex]\:\:\:\:\bullet\:\:\:\sf{Height_{\:(max)}\: reached\: by \:the \:projectile }[/tex]

[tex]\\[/tex]

[tex]{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\[/tex]

As we know that,

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{ H = \dfrac{u^2\;sin^2\theta}{2\;g} }[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{H = \dfrac{(28)^2\;sin^2 30^{\circ}}{2\;(9.8)} }[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{H = \dfrac{784 \times \;sin^230^{\circ}}{19.6} }[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{ H = \dfrac{784}{19.6}\times sin^2 30^{\circ}}[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{ H = \dfrac{784}{19.6}\times \bigg(\dfrac{1}{2}\bigg)^2 }[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: \sf{ H = \dfrac{784}{19.6}\times \dfrac{1}{4} }[/tex]

[tex]\\[/tex]

[tex]\dashrightarrow\:\: {\boxed{\sf{H=10\:m }}}[/tex]

ACCESS MORE