[tex]{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ 4 \: identical \: charges = 2 \mu \: C \:\:\:(each)} \\\\ [/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Side \: of \: square = 2 \: m }[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ Electric \: potential \: at \: centre\:( V_{c})}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\[/tex]
☯ According to the given data,
[tex]\\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Length \: of \: diagonal= \sqrt{2} a } \\\\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ Length \:of \: half \: diagonal = \sqrt{2}}[/tex]
[tex]\\[/tex]
☯ As we know that,
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{V_{c} = V_{1} + V_{2} + V_{3} + V_{4} }[/tex]
[tex]\\[/tex]
[tex] \sf{(V_{1} = V_{ 2} = V_{3} = V_{4}) }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{V_{c} = 4 V_{1} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ V_{c} = 4 \times \dfrac{k q_{1}}{ r_{1}}}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{V_{c} = 4 \times \dfrac{9 \times {10}^{9} \times 2 \times {10}^{ - 6} }{\sqrt{2}} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{V_{c} =4 \times 9 \times \sqrt{2} \times {10}^{9 - 6} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{V_{c} =36\sqrt{2} \times {10}^{3} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \underline{\boxed{\sf{V_{c} =3.6\sqrt{2} \times {10}^{4} \: J /c }}}[/tex]
[tex]\\[/tex]
★ The electric potential at center of square is 3.6[tex]\sqrt{2}[/tex] × 10⁴ J/c