g A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standar deviation will be needed to achieve a process capability index

Respuesta :

Complete Question

A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?

Answer:

The value required is  [tex]\sigma = 0.0133[/tex]

Step-by-step explanation:

From the question we are told that

   The upper specification is  [tex]USL = 1.68 \ mm[/tex]

    The lower specification is  [tex]LSL = 1.52 \ mm[/tex]

     The sample mean is  [tex]\mu = 1.6 \ mm[/tex]

     The standard deviation is  [tex]\sigma = 0.03 \ mm[/tex]

Generally the capability index in mathematically represented as

             [tex]Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ][/tex]

Now what min means is that the value of  CPk is the minimum between the value is the bracket

          substituting value given in the question

           [tex]Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ][/tex]

=>      [tex]Cpk = min[ 0.88 , 0.88 ][/tex]

So

         [tex]Cpk = 0.88[/tex]

Now from the question we are asked to evaluated the value of  standard deviation that will produce a  capability index of 2

Now let assuming that

         [tex]\frac{\mu - LSL }{ 3 * \sigma } = 2[/tex]

So

         [tex]\frac{ 1.60 - 1.52 }{ 3 * \sigma } = 2[/tex]

=>    [tex]0.08 = 6 \sigma[/tex]

=>     [tex]\sigma = 0.0133[/tex]

So

        [tex]\frac{ 1.68 - 1.60 }{ 3 * 0.0133 }[/tex]

=>      [tex]2[/tex]

Hence

      [tex]Cpk = min[ 2, 2 ][/tex]

So

    [tex]Cpk = 2[/tex]

So    [tex]\sigma = 0.0133[/tex] is  the value of standard deviation required

ACCESS MORE