Respuesta :

Space

Answer:

[tex]\displaystyle y''' = 2 \sec^2 (x) \bigg( 2\tan^2 (x) + \sec^2 (x) \bigg)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \tan x[/tex]

Step 2: Differentiate

  1. Trigonometric Differentiation:                                                                       [tex]\displaystyle y' = \sec^2 (x)[/tex]
  2. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle y'' = 2 \sec (x) \cdot \frac{d}{dx}[\sec (x)][/tex]
  3. Trigonometric Differentiation:                                                                       [tex]\displaystyle y'' = 2 \sec (x) \cdot \sec (x) \tan (x)[/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle y'' = 2 \sec^2 (x) \tan (x)[/tex]
  5. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle y''' = \frac{d}{dx}[2 \sec^2 (x)] \tan (x) + 2 \sec^2 (x) \frac{d}{dx}[\tan (x)][/tex]
  6. Rewrite [Derivative Property - Multiplied Constant]:                                  [tex]\displaystyle y''' = 2 \frac{d}{dx}[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) \frac{d}{dx}[\tan (x)][/tex]
  7. Trigonometric Differentiation:                                                                       [tex]\displaystyle y''' = 2 \frac{d}{dx}[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)[/tex]
  8. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle y''' = 2 \big( 2 \sec (x) \big) \frac{d}{dx}[\sec (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)[/tex]
  9. Trigonometric Differentiation:                                                                       [tex]\displaystyle y''' = 2 \big( 2 \sec (x) \big) \big( \sec (x) \tan (x) \big) \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)[/tex]
  10. Simplify:                                                                                                         [tex]\displaystyle y''' = 4 \sec^2 (x) \tan^2 (x) + 2 \sec^4 (x)[/tex]
  11. Factor:                                                                                                           [tex]\displaystyle y''' = 2 \sec^2 (x) \bigg( 2\tan^2 (x) + \sec^2 (x) \bigg)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

ACCESS MORE