Respuesta :

 First you find the integral by using the property the integral of x^n (where n is a number) =(x^(n+1))/(n+1) 
So in this case: 
abs(x-5)=x^n (where n=1) - 5x^m (where m=0) 
so when you solve for it, you get 
=abs( [(x^(1+1))/ (1+1)] - [5(x^(0+1))/(0+1)] ) from 0 to 10 
= abs( .5x^2 -5x) from 0 to 10 
then plug in the top value, x=10, and subtract the bottom value, x=0, from it: 
=abs( .5(10^2) -5(10)) - abs(.5(0)-5(0)) 
=0 - 0 
=0
ACCESS MORE