Respuesta :
Solution :
Let x, y, z be the dimensions of the rectangle.
Volume of the rectangle (V) = xyz
Given that the vertex should lie on ellipse [tex]$4x^2 + y^2+4z^2=4$[/tex] .......(i)
So here the volume xyz must be maximum with constraints above.
We solve this using Lagranches method with variable λ
Lagranches function is
[tex]$F : xyz + \lambda(4x^2+y^2+4z^2-4)=0$[/tex] .....(ii)
To find λ, [tex]$\frac{dF}{dx}=0; \frac{dF}{dy}=0;\frac{dF}{dz}=0$[/tex]
[tex]$\frac{dF}{dx}=0 \Rightarrow yz+\lambda(16x)=0 \Rightarrow \lambda = -\frac{yz}{16x}$[/tex] .............(iii)
[tex]$\frac{dF}{dy}=0 \Rightarrow xz+\lambda(2y)=0 \Rightarrow \lambda = -\frac{xz}{2y}$[/tex] ..................(iv)
[tex]$\frac{dF}{dz}=0 \Rightarrow xy+\lambda(16z)=0 \Rightarrow \lambda = -\frac{xy}{16z}$[/tex] ...............(v)
Equating (iii) and (iv)
[tex]$-\frac{yz}{16x}=-\frac{xz}{2y} \Rightarrow y^2=8x^2 \Rightarrow y = \sqrt8 x$[/tex] ...............(vi)
Equating (iii) and (v)
[tex]$-\frac{yz}{16x}=-\frac{xy}{16z} \Rightarrow z^2=x^2 \Rightarrow z = x$[/tex] ....................(vii)
Substitute (vi) and (vii) in (i),
From (i),
[tex]$4x^2 + (\sqrt8 x)^2+4x^2 = 4$[/tex]
[tex]$\Rightarrow 4x^2 +8x^2+4x^2 = 4 \Rightarrow x = \frac{1}{4}$[/tex]
From (vi),
[tex]$y = \sqrt8 x$[/tex]
[tex]$\Rightarrow y= \sqrt8 \times \frac{1}{4} \Rightarrow y =\frac{\sqrt8}{4}$[/tex]
[tex]$\Rightarrow y =\frac{\sqrt{2\times4}}{4} \Rightarrow y = \frac{1}{\sqrt2}$[/tex]
From (vii),
z = x
[tex]$z =\frac{1}{4}$[/tex]
Therefore, for maximum volume the dimensions of a rectangle box are
[tex]$x =\frac{1}{4} ; y = \frac{1}{\sqrt2} ; z =\frac{1}{4}$[/tex]