SAT verbal scores are normally distributed with a mean of 430 and a standard deviation of 120 (based on the data from the College Board ATP). If a sample of 15 students is selected randomly, find the probability that the sample mean is above 500. Does the central limit theorem apply for this problem?

Respuesta :

Answer:

The value is  [tex]P(X > 500 ) = 0.011942[/tex]

Step-by-step explanation:

From the question we are told that

       The mean is  [tex]\mu = 430[/tex]

       The standard deviation is  [tex]\sigma = 120[/tex]

       The sample size is  n  =  15

   

Generally  the probability that the sample mean is above 500

Gnerally the standard error of mean is mathematically represented as

             [tex]s = \frac{\sigma }{ \sqrt{n} }[/tex]

=>          [tex]s = \frac{ 120 }{ \sqrt{15} }[/tex]

=>           [tex]s = 30.984[/tex]

Generally  the probability that the sample mean is above 500

     [tex]P(X > 500 ) = P( \frac{X - \mu }{\sigma_x} > \frac{500 - 430 }{ 30.984 } )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

       [tex]P(X > 500 ) = P( Z > 2.259 )[/tex]

=>     [tex]P(X > 500 ) = P( Z > 2.259 )[/tex]

From the z table  the area under the normal curve to the right  corresponding to  2.259  is

          [tex]P( Z > 2.259 ) = 0.011942[/tex]

=>       [tex]P(X > 500 ) = 0.011942[/tex]

ACCESS MORE