Answer:
3.2 years
Explanation:
The corrosion penetration rate (CPR) is given by:
[tex]CPR=\frac{KW}{\rho At} \\\\Where:\\K=constant, W=weight\ loss, \rho=density\ of\ specimen, A=area\ of\ exposed\ specimen, t=time\ exposed[/tex]
Given that:
CPR = 120 mpy, W = 1.9 kg = 1900 g, density of steel = 7.9 g/cm³, A = 38 in², K = 534 (for 10⁻³ in per year),
Substituting:
[tex]120 \ mpy=\frac{534*1900\ g*(10^3\ mg/g)}{7.9g/cm^3*38\ in^2*t} \\\\t=\frac{534*1900\ g*(10^3\ mg/g)}{7.9g/cm^3*38\ in^2*120\ mpy} \\\\t= 28164.56\ hours\\\\t=\frac{28164.56\ hours}{24\ hr/day*365\ day/year}\\\\t= 3.2 \ years[/tex]